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SUMMARY 

The dependence of the capacity ratio on the composition of the binary mobile 
phase is discussed in terms of Snyder’s treatment. The relationships obtained for the 
capacity ratio have been tested on experimental. data. -The derivation of the relation- 
ship for the capacity ratio discussed by Jandera and Churacek has been examined. 

INTRODUCTION 

Increasing interest in gradient elution chromatography as a rapid method of 
analysis has made desirable the eluadation of the theoretical basis of the process of 
liquid-solid adsorption chromatography. The basic problems involved are optimiza- 
tion of the time of analysis and the resolution. One of the main parameters that 
determines the process of elution is the capacity ratio. Although in isocratic elution 
at an infinitely low concentration of the sample the capacity ratio remains constant 
for a given chromatographic system, in gradient elation it is necess&ry to know the 
relationship between the capacity ratio, kAB, and the composition of the mobile phase 
A-B. 

It follows from many papers I-S that three types of relationships describing 
the dependence between the capacity ratio and the concentration of the component 
that is the more efficient eluent in a binary mobile phase carr be distinguished: 

log kL = &i-blOgi, 

logkL=a+bx, (lb) 

&+afbx, _.. 
‘ 
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where X, is the molar fraction (or concentration) of the more efficient ehrent .B in 
the binary mobile. phase A-l% and: a and. 6. are constants.. Nwrierous studjes5-7*q have 
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shown that these three relationships can be used to characterize a &romatographiC 
system. 

:- __ ._: ,-.-.I: :_. _ 

DISCUSSION OF THE-%4NDERA-CHURAGEK DERJS’ATION OF THE RELA’FiONSHf~ 
BETWEEN LOG k;a AND LOG xrp ._ . . . :- _. :... . : 

Jaudera and ChuraCeh’ derived eqns. la and. lb; the former was obtained 
on the basis of Snyder’s theory of.liquid-solid adsorption chromato~phy“‘. Their 
derivation of ~qn. la requires further comment. -According to _the$-derivation. the 
constants a and b are expressed by (I = log k;, and b = -n = -cus/os, where k;, 
is the capacity ratio for a. sample compound S in pure solvent B and o, and o, 
are the molecular areas occupied by mo&ules of sample S and solvent B, respec- 
tively. 

.. Let us discuss the constants Q and b according to Snyder’s treatment”. Snyder 
obtained the following expr&ion: 

&m = &* + (cffl$-1 log [x, 10--am~E*-EB’ + 1 - xg] (2) 
-. 

for the-strength eAs of a binary solvent A-B, assuming the following: 
(a) an expression for equilibrium constant, K, defining the following reaction : 

a~ = 10Q’%.V-eA’ YB t1 - xB) 
= (I -YB)xB 

(3) 

(b) a relationship between the Capacity ratios kap and-k;, : 

log (kuk;) =. a&,:E& ‘._. 

log (k;Jkk; = a w (& - eB) f4b) 

(c) additivity of the capacity ratios k; and kB: 

(d) equality of the molecular areas occupied by molecules of adsorbed 
samples, solvents A and B: 

- 

In .the above equations, k; denotes the capacity ratio for a sample Compound in 
pure solvent A; Q is the SurfaCe activity function; &A and &a -denote the StmngthS Of 
the solvents A and B, respectively; and yn is the molar fraction of solvent B in the 
surfaCe phase. Jaridera and Chuacek; again introducing eqni 2 into eqn. 4a but this 
time- omitting Snyder% assumption :about~:the~equaJity .of the motedular..areas of: 
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the sample compound S and the more efEcieQt eluent B, as well as neglecting ,.tjxe 

terml- xB in .eqQ. 2, obtained eqn. la. A direct consecluence of neglecting the term 
1 - x, is an irregular behaviour of eqQ. la in the region of i~&riteIy low concentra- 
tions of x,. IQ real systems, it would be expected that kiB will tend towards kk at 
x, + 0, whereas eqn. la gives kiB + 00 Within this limit. EqQ. la aiS0 Suggests that 
km for any sample component chromatographed does not depend on the properties 
of the less- eEcieQt eluent A in the binary solvent mixture A-B. Hence, it cam be 
concluded that for a less efficient eluent in the binary mobile phase, k& will be 
constant at a given concentration of the more efficient ehrert B. However, QzLmerous 
experimental data show that kL at a given concentration x, is dependent oQ the 
properties of all components of the mobile phase. The treatment of Jandera and 
Churaceh resulted in a value of n # 1, which is due to the incorrect application of 
eqn. 6. Although the values of R in eqn. la may be different from unity, which is 
often confhmed experimentally, the correct application of Snyder’s assumption leads 
tothevaluen= 1. 

DERIVATION OF THE DEPENDENCE OF THE CAPAkLTY RATIO LN TERMS OF 
SNYDER’S THEORY 

IQ the light of the above discussion, it seem appropiate to derive a reIatioQship 
betweeQ the capacity ratio, k& and the composition of the bisary mobile phase in 
which the parameters depend OQ the properties of both the solvents of the mobile 
phase and the sample being chromatographed. Moreover, this relationship should 
be correct for the whole range of concentrations x,. Such a- relationship cam be ob- 
tained by using Snyder’s assumptions (a)-(d) above. Combining eqn. 4b with eqn. 3, 
we obtain 

k’,k’ = h(l --d 
A B (I - YB) xB 

(7) 

Then, elimination of the variable yB from eqns. 5 and 7 lends to 

This equation is related to the empirical relationship in eqn. lc. Of course, eqn. 8, 

assuming 1 - _$ << &s, gives 

log kL = log k; - log x, (9) 

which corresponds to the special case of the empirical relationship in eqn. la, Le., 

logkk, = a -logx, 

with -6 = n = 1. It cam easily be seen that eqn. 8 predicts correctly the values of 
k&j at the hQlitiQg COQCeQtrati~n~ of xn (xn = O- and XB = 1) and is a direct ‘Con- 
sequence of Snyder’s CteorylO, Le., this equation is obta&d from Snyder’s theory 
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Fig. 1. Linear dependences plotted aaxwding to eqn. la. (e) A = C&, B = CsHuQ, S = 2- 
amino-3-m&ylp_yridirze, stationary phase = ahnina; (0) A = CQ, B = CHCI,. S = V-di- 
methy!quiaoline, stationary phase = ahnina; <@)A = CCL, B = CHClsS = quinoline,stationary 
phazx = Silica gel. 

Fig_ 2. Linear dependaxes plotted acarding to eqrt. 8. SymboIs as in Fig. 1. 

without any further simpIi8titions. Eqn. 8 has also been dis&ssecl by Soczw&ki9 
and Scott and Kucera* by using other theoretical approaches. 

In Figs. 1 and 2 the agreement of eqns. la and 8 with the experimental data 
obtained by OBcik and Chojnacka” and R6zyI0’~ is compared. It can be seen that 
both equations describe the experimental data at higher vah~es of x,, but at low 
concentrations of solvent B eqn. 8 gives considerably better results. These results 
con8rm the theoretical discussion concerning the regions of applicability of eqns. 
la and 8. It is interesting, however, that eqn. la agrees very well with the experimental 
data at higher values of x, for adsorption systems with pt # 1. This agreement is 
not covered by the Snyder’s treatment based upon assumptions (a)-(d): however, 
if A and B have very different molecular sizes, changes must be made to assumptions 
(a) and (d), which leads to a more general relationship for k& 

A more general&d form of reaction in (a) can he written as 

%~,i~ phase) -i mA<wua phar) + %alid phnst) +- mAoi,ld ~I.IXC) 

where m = c&o~. This leads to the foIlowing expression for the equilibrium constant : 

when m Z 1, eqn. 8 cannot be solved analyticahy with respect to y,, and only 
numerical solutions are avai3.able which are not convenient for gradient optimization: 



CAPACITY RA%TO AND-MOBILEPJK4SE COhfPOSITEoN BT 2% 5 

However, in .the special case when yB approaches unity and K is sufkientiy large 
(a large difference in concentration between the two components of the mobile phase), 
from eqns. 8 and 5 the following expression czm be obtained: 

log kh = log (k+) -&log+ (12) 

for high X, values. This equation is formally analogous to eqn. la where -l/m = 
b f -1 (or n + 1). Thus, in conclusion, it can be stated that OQ the basis of Snyder’s 
theory, full mathematical justification has been found for eqn. 8, and this theory 
leads to the approximate cqns. 9 (b = -1) and 12 (b f -1). 

ACKNOWLEDGEMENT 

Tkis research was supported by the Polish Academy of Sciences, Problem No. 
03.10.6.03.03. 

REFERENCES 

1 E. Socze+ki and G. Matysik, L Chronz~togr., 32 (1968) 458. 
2 E. Soczewiiisk 2nd C. A. Wachtrneister, J. Cfirmrzat~gr., 7 (1962) 311. 
3 S. Ham, J. C/Imnat~&r., I37 (1977) 41. 
4 w. Golkiewin, cfKro/?rutograpi%z, 9 (1976) 113. 
5 W. Golkiewicz and E. Soczewbiski, Chrorrz~~ogmp’zkz, 11 (1978) in press. 
6 E. Smtiki, T. Dzido and W. Gdkiewia, Chranzafogrqfikz, 10 (1977) 298. 
7 P. Jandera and J. Churacek, 1. Ciromacogr., 91 (1974) 207. 
8 R. P. W. Scott and P. Kucera, J. Chromatogr., 112 (197.5) 42.5. 
9 E. Zhczew L Chronmogr., 130 (1977) 23. 

10 L. R. Snyder, PrincipGes of Adsorption Chronmtograplzy, Marcel Dekker, New York. 1968. 
11 J. Oscik and G. Chojnacka, 1. Cliramprogr, 93 (1974) 167. 
12 J. K. R&yio, Thesis, M. CurieSkfodowska University, LubIin, 197.5. 


